Calculus, PreCalculus and Logic Symbols

<	less than			α	alpha
>	greater than			β	beta
\wedge	and			γ	gamma
\vee	or			δ	delta
≤,≯	less than or equal to			3	epsilon
≥,≮	greater than or equal to			ζ	zeta
\forall	for all, for each, for every, for	r any		η	eta
Э	there exists			θ	theta
!	exactly, or factorial (two mea	nings		l	iota
	for the same symbol)	-		κ	kappa
Э,:	such that			λ	lambda
E	is an element of			μ	mu
*	multiplication if between symbols,			v	nu
	contradiction if at the end of a statement			χ	xi
~	not			0	omicron
	Q.E.D quod erat demonstrandum, which			π	pi
	was to be shown nor demonstrated			ρ	rho
∞	infinity, to increase without bound			σ	sigma
\rightarrow	implies that, forces, then			τ	tau
\leftrightarrow	iff, if and only if, bijection			υ	upsilon
<i>.</i> :.	therefore			φ,φ	phi
0	functional composition			χ	chi
≠	not equal to			Ψ	psi
≈	approximately equals			ω	omega
	ellipsis, continue similarly				
\aleph_0	alef naught, the cardinality of the				
0	natural numbers				
Ø	empty set, undefined, does NOT				
	mean zero				
\cap	intersection				
\cup	union				
	radical, root				
Ν	set of natural numbers	~Q	set of irrationa	al numb	ers
	set of huturur humbers		set of mutolit		~
\mathbb{Z}	set of integer numbers	\mathbb{R}	set of real num	obers	
0	set of rational numbers	C	set of complex numbers		
*	set of fational numbers	-	set of complex numbers		

Baldwin